\(\int \cos ^{\frac {9}{2}}(c+d x) (B \sec (c+d x)+C \sec ^2(c+d x)) \, dx\) [1173]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 30, antiderivative size = 111 \[ \int \cos ^{\frac {9}{2}}(c+d x) \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {6 C E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {10 B \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {10 B \sqrt {\cos (c+d x)} \sin (c+d x)}{21 d}+\frac {2 C \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac {2 B \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{7 d} \]

[Out]

6/5*C*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+10/21*B*(cos(1/2
*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/5*C*cos(d*x+c)^(3/2)*sin(d*x
+c)/d+2/7*B*cos(d*x+c)^(5/2)*sin(d*x+c)/d+10/21*B*sin(d*x+c)*cos(d*x+c)^(1/2)/d

Rubi [A] (verified)

Time = 0.12 (sec) , antiderivative size = 111, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {4149, 2827, 2715, 2719, 2720} \[ \int \cos ^{\frac {9}{2}}(c+d x) \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {10 B \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {2 B \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{7 d}+\frac {10 B \sin (c+d x) \sqrt {\cos (c+d x)}}{21 d}+\frac {6 C E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 C \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d} \]

[In]

Int[Cos[c + d*x]^(9/2)*(B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

(6*C*EllipticE[(c + d*x)/2, 2])/(5*d) + (10*B*EllipticF[(c + d*x)/2, 2])/(21*d) + (10*B*Sqrt[Cos[c + d*x]]*Sin
[c + d*x])/(21*d) + (2*C*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(5*d) + (2*B*Cos[c + d*x]^(5/2)*Sin[c + d*x])/(7*d)

Rule 2715

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Sin[c + d*x])^(n - 1)/(d*n))
, x] + Dist[b^2*((n - 1)/n), Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integ
erQ[2*n]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 4149

Int[(cos[(e_.) + (f_.)*(x_)]*(b_.))^(m_)*((A_.) + (B_.)*sec[(e_.) + (f_.)*(x_)] + (C_.)*sec[(e_.) + (f_.)*(x_)
]^2), x_Symbol] :> Dist[b^2, Int[(b*Cos[e + f*x])^(m - 2)*(C + B*Cos[e + f*x] + A*Cos[e + f*x]^2), x], x] /; F
reeQ[{b, e, f, A, B, C, m}, x] &&  !IntegerQ[m]

Rubi steps \begin{align*} \text {integral}& = \int \cos ^{\frac {5}{2}}(c+d x) (C+B \cos (c+d x)) \, dx \\ & = B \int \cos ^{\frac {7}{2}}(c+d x) \, dx+C \int \cos ^{\frac {5}{2}}(c+d x) \, dx \\ & = \frac {2 C \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac {2 B \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{7 d}+\frac {1}{7} (5 B) \int \cos ^{\frac {3}{2}}(c+d x) \, dx+\frac {1}{5} (3 C) \int \sqrt {\cos (c+d x)} \, dx \\ & = \frac {6 C E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {10 B \sqrt {\cos (c+d x)} \sin (c+d x)}{21 d}+\frac {2 C \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac {2 B \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{7 d}+\frac {1}{21} (5 B) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx \\ & = \frac {6 C E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {10 B \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {10 B \sqrt {\cos (c+d x)} \sin (c+d x)}{21 d}+\frac {2 C \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac {2 B \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{7 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.52 (sec) , antiderivative size = 77, normalized size of antiderivative = 0.69 \[ \int \cos ^{\frac {9}{2}}(c+d x) \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {126 C E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+50 B \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+\sqrt {\cos (c+d x)} (65 B+42 C \cos (c+d x)+15 B \cos (2 (c+d x))) \sin (c+d x)}{105 d} \]

[In]

Integrate[Cos[c + d*x]^(9/2)*(B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

(126*C*EllipticE[(c + d*x)/2, 2] + 50*B*EllipticF[(c + d*x)/2, 2] + Sqrt[Cos[c + d*x]]*(65*B + 42*C*Cos[c + d*
x] + 15*B*Cos[2*(c + d*x)])*Sin[c + d*x])/(105*d)

Maple [A] (verified)

Time = 12.48 (sec) , antiderivative size = 290, normalized size of antiderivative = 2.61

method result size
default \(-\frac {2 \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (240 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{8}+\left (-360 B -168 C \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (280 B +168 C \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (-80 B -42 C \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+25 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-63 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{105 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(290\)

[In]

int(cos(d*x+c)^(9/2)*(B*sec(d*x+c)+C*sec(d*x+c)^2),x,method=_RETURNVERBOSE)

[Out]

-2/105*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(240*B*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^8+
(-360*B-168*C)*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)+(280*B+168*C)*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+(
-80*B-42*C)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+25*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-
1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-63*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1
/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/
2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 148, normalized size of antiderivative = 1.33 \[ \int \cos ^{\frac {9}{2}}(c+d x) \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {2 \, {\left (15 \, B \cos \left (d x + c\right )^{2} + 21 \, C \cos \left (d x + c\right ) + 25 \, B\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 25 i \, \sqrt {2} B {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 25 i \, \sqrt {2} B {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 63 i \, \sqrt {2} C {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 63 i \, \sqrt {2} C {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{105 \, d} \]

[In]

integrate(cos(d*x+c)^(9/2)*(B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="fricas")

[Out]

1/105*(2*(15*B*cos(d*x + c)^2 + 21*C*cos(d*x + c) + 25*B)*sqrt(cos(d*x + c))*sin(d*x + c) - 25*I*sqrt(2)*B*wei
erstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + 25*I*sqrt(2)*B*weierstrassPInverse(-4, 0, cos(d*x + c
) - I*sin(d*x + c)) + 63*I*sqrt(2)*C*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*
x + c))) - 63*I*sqrt(2)*C*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))))/d

Sympy [F(-1)]

Timed out. \[ \int \cos ^{\frac {9}{2}}(c+d x) \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)**(9/2)*(B*sec(d*x+c)+C*sec(d*x+c)**2),x)

[Out]

Timed out

Maxima [F]

\[ \int \cos ^{\frac {9}{2}}(c+d x) \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right )\right )} \cos \left (d x + c\right )^{\frac {9}{2}} \,d x } \]

[In]

integrate(cos(d*x+c)^(9/2)*(B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c))*cos(d*x + c)^(9/2), x)

Giac [F]

\[ \int \cos ^{\frac {9}{2}}(c+d x) \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right )\right )} \cos \left (d x + c\right )^{\frac {9}{2}} \,d x } \]

[In]

integrate(cos(d*x+c)^(9/2)*(B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c))*cos(d*x + c)^(9/2), x)

Mupad [B] (verification not implemented)

Time = 18.38 (sec) , antiderivative size = 87, normalized size of antiderivative = 0.78 \[ \int \cos ^{\frac {9}{2}}(c+d x) \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=-\frac {2\,B\,{\cos \left (c+d\,x\right )}^{9/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {9}{4};\ \frac {13}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{9\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}}-\frac {2\,C\,{\cos \left (c+d\,x\right )}^{7/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {7}{4};\ \frac {11}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{7\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \]

[In]

int(cos(c + d*x)^(9/2)*(B/cos(c + d*x) + C/cos(c + d*x)^2),x)

[Out]

- (2*B*cos(c + d*x)^(9/2)*sin(c + d*x)*hypergeom([1/2, 9/4], 13/4, cos(c + d*x)^2))/(9*d*(sin(c + d*x)^2)^(1/2
)) - (2*C*cos(c + d*x)^(7/2)*sin(c + d*x)*hypergeom([1/2, 7/4], 11/4, cos(c + d*x)^2))/(7*d*(sin(c + d*x)^2)^(
1/2))